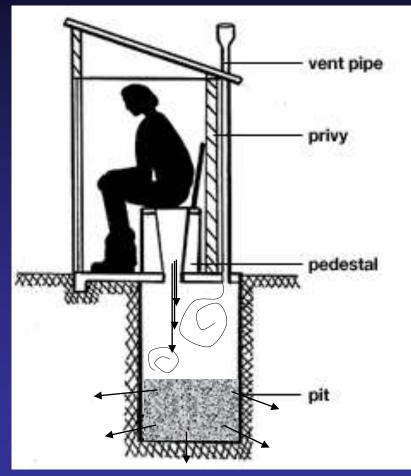

How fast do pits and septic tanks fill up? Implications for design and maintenance

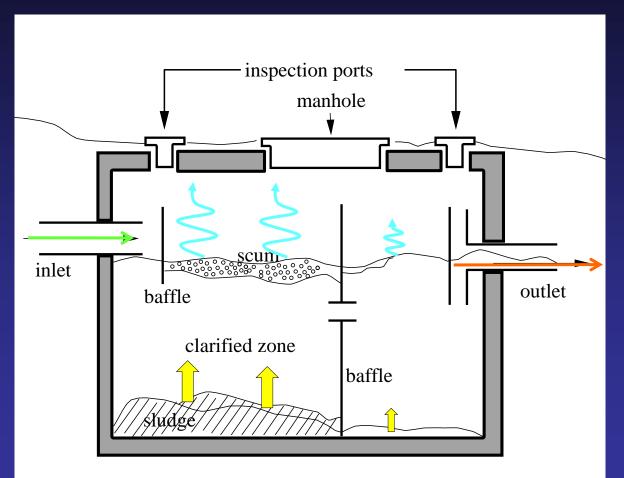
UKZN: Kitty Foxon, Chris Buckley, Chris Brouckaert, Babatunde Bakare PID: Dave Still, Frances Salisbury


UNIVERSITY OF KWAZULU-NATAL

INYUVESI **YAKWAZULU-NATALI**

Accumulation = Inflow – Reaction – Outflow

Application to pit_latrines


• Accumulation = Inflow – reaction – outflow

- Anal cleansing material
- Cleaning water, detergents, disinfectants, rubbish
- Reaction
 - Biodegradable material = Food
 - Food + $O_2 \rightarrow BUGS + CO_2$
 - Food (no O_2) \rightarrow bugs + CH₄ (methane)
 - Outflow:
 - Continuous drainage to surroundings
 - Water and dissolved components

Mass balance in pits cont.

- So accumulation is due to -BUGS
 - -bugs
 - Salts
 - –non-degradable material (including rubbish)
 - Some undegraded, but potentially biodegradable material

Application to septic tanks

Refaction:

- Similar to pit *but*
- Messeowyteen
- Messerubbisht(icsually)

- Arstachtiongent

Suthow:

- Scum (degrades slowly)
- Similar to pit but
- Dugs
- More water
- Unbiodegradable – Solids can leave too
- Solids can leave too material
- Some potentially biodegradable material

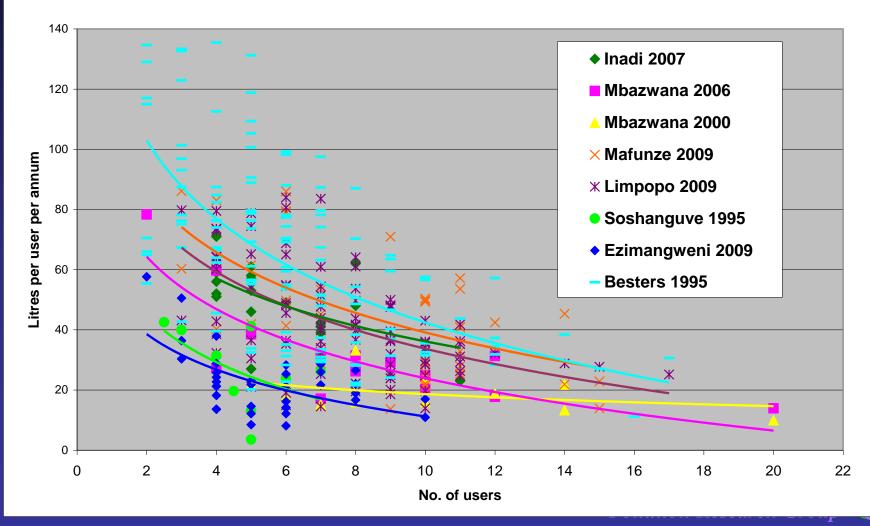
Accumulation rate calculations:

- Rate at which material is added
 - Average excreta production per person per day
 - Faeces ~0.12 − 0.40 ℓ /d
 - Urine ~ $0.6 1.5 \ell / d$
 - Average addition per person per year
 - Faeces = 0.3 ℓ /d × 365 d/year = 110 ℓ /ca.year
 - Urine = 1.2 ℓ /d × 365 d/year = 440 ℓ /ca.year

– Total volume added: 550 ℓ /person.year

Accumulation rate in pit latrines: Data

- Faeces added $\pm 110 \ell$ /person.year
- Measured solids accumulation rates:


Solids content: approx 330g/kg

Study area	Filling rate [ℓ/person.year]	Reference	
Soshanguve	24	Norris (2000)	
Philippines	40	World Health Organisation (1958)	
Besters Camp (eT Muncip.)	<20 to >80 (70)	City of Durban	
Mbazwana (northern KZN)	10 to 78 (25)	Partners in Development	
Limpopo	43	Tsonang NGO	
Mafunze	11 to 146 (48)	Partners in Development	
Ezimangweni (eT Muncip.)	27±10	UKZN	
Savana Park (eT Muncip.)	31±21	UKZN Don't forget toilet	
Folweni (eT Muncip.)	44±46	UKZN paper!	

Accumulation in pit latrines: Mass balance

- Less sludge accumulates than the amount of faeces added
 - (even ignoring rubbish and toilet paper!)
- i.e. A significant amount of solids reduction occurs in the pit
- The solids reduction is predominantly due to biological action
- Liquid mostly leaves the pit through pit walls

Sludge accumulation rate vs. no. of users

Accumulation rate in Septic tanks: Data

- Faeces added $\pm 110\ell$ /person.year
- Measured solids accumulation rates:

Solids content: approx 30g/ℓ

Filling rate [ℓ/person.year]	Comment	Reference
64 - 92	Decreases with time	Gray (1995)
50	Decreases slightly with time	Bounds (1995)
69		PHS (1949)
64		Moore (2000)
76		Pradhan (2007)
69-106	Decreases with septic tank size	Brandes (1978)

Comparison between pit latrines and septic tanks

- Cannot compare rates in l/person.year since septage is much *wetter* (more water) than pit latrine sludge
 - Using some rough density values
 - Pit sludge = $1.5 \text{ kg}/\ell$
 - Using limited solids content data from literature
 - Pit sludge = 330 g Solids/kg
 - Septage = 30 g Solids/L
 - Gives average (dry) solids accumulation rates of
- Pit sludge = 19 kg dry solids/person.year
- Septage = 2 kg dry solids/person.year

Summary: pit filling rates

- Pit latrines:
 - Wide range of numbers observed in field
 - 40^ℓ/person.year seems a reasonable mean
 - 60ℓ/person.year reasonable figure for design
 - Accumulation rate *decreases* with number of users
 - Accumulation rate *decreases* as pit fills (rate of filling slows with time)

Summary: Septic tank filling rates

- Septic tanks:
 - Wide range of numbers observed in field
 - 60ℓ/person.year seems a reasonable mean
 - 80ℓ/person.year reasonable figure for design
 - Greater volumes of sludge generated than in pit latrines, but solids content is much less (10%).
 - Accumulation rate *decreases with time*

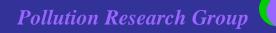
Removed sludge

• In both cases, the sludge is fairly well stabilised (little residual biodegradability)

• Should not be put into WWTP!

Helminth eggs

- Most human pathogens (virus, bacteria) are deactivated in pit latrines and septic tanks
- Helminth eggs are the most persistent
- UKZN/PID studies on Ascaris egg viability in exhumed pit latrine sludge


Helminth eggs in pit sludge - results

- Total egg counts: 0 3500 eggs/g sludge
- % of eggs possibly viable: 0-96%
- % of eggs with visible larva: 0-40%
- % of eggs definitely infectious: 0-9% – (motile larva)
- Material from *emptied pits* therefore average age >5 years

Helminth eggs in septage

 Literature indicates values between 10² and 10³ eggs/g sludge

• Indicates that long residence in a pit latrine or septic tank does not deactivate helminth eggs

Filling rates: implications for design

- Design around maintenance programme:
- Approach (1)
 - Design for government/municipal/NGO emptying programme (householder not responsible)
 - t = Frequency of emptying (e.g.10 years)
 - $r = Design filling rate (e.g. 60\ell/person.year)$
 - n = Average number of users in household (e.g. 6 people)
- Design equation: Pit volume = $V = r \times n \times t$ e.g. $V = 60\ell/\text{person.year} \times 6 \text{ people} \times 5 \text{years}$ = 3 000 ℓ = 3 m³

Filling rates: implications for design

- Design around maintenance programme:
- Approach (2)
 - Large pits are difficult to empty
 - Require professional emptiers
 - Require specialised equipment
 - 100% risk of helminth infection
- Therefore, if no local capacity for organised emptying programme, build shallow pits that can be emptied by householder.
- Or, if high capacity for organised emptying programme, build shallow pits that can be quickly emptied with reduced risk of helminth infection.

Design of septic tanks

- More complicated since design includes
 Sludge accumulation
 - Liquid flow
- Many standard design texts
- Bigger tanks require less frequent desludging.

What next?

- 1. What do you do with the emptied pit contents?
- 2. Improved design, better operation requires better understanding of what happens in pit latrines.

Acknowledgements

- Water Research Commission
- eThekwini Municipality

