Quantifying the fertilizer value of municipal wastewater sludge

WRC Research Development and Innovation Symposium & Water-tech Summit 16 - 18 September 2015

Eyob Habte Tesfamariam Department of Plant Production and Soil Science University of Pretoria 17/09/2015

Nutrient cycle under commercial farming

Overall view of the study in flow diagram

<u>1. Laboratory incubation study</u> aim

Assess the effect of wastewater treatment and post treatment dewatering techniques on:

- The nitrogen composition, and
- The fertilizer value of sludge

Generate parameters for SWB-Sci model.

1.1 Summary of findings

 Effect of wastewater treatment and post treatment dewatering techniques on the total N content sludge:

1.2 Summary of findings

 Effect of post treatment dewatering techniques on the total N content of sludge:

1.3 Summary of findings

• Effect of wastewater treatment and dewatering on the release of N for use by plants:

1.4 Summary of findings

- What are the implications with respect to:
 - Agronomic sludge recommendation rate?
 - Fertiliser value of sludge?
- Case study:
 - Location of farm around Johannesburg,
 - Farm distance from WTP 10 km,
 - Farm size 100 ha,
 - Crop maize (rain fed),
 - N requirement 120 kg/ha,
 - Transport R58 per km per load (30 ton track),
 - Spreading cost R55 per ton.

1.4.1 Summary of findings

- Total sludge recommendation to satisfy crop N requirement of the 100 ha farm.
 - Sludge source different wastewater treatment and dewatering techniques

1.4.1 Summary of findings

• Total cost (transport + spreading) of sludge to the 100 ha farm 10 km away from WTP.

1.4.2 Summary of findings

- Total sludge recommendation to satisfy crop N requirement of the 100 ha farm.
 - Sludge source similar wastewater treatment but differing drying techniques and/or depths.

1.4.2 Summary of findings

• Total cost (transport + spreading) of sludge to the 100 ha farm 10 km away from WTP.

1.4.3 Summary of findings

- The SWB-Sci mechanistic model was parameterised:
 - Using data collected from controlled incubation studies.

2. Field experiment aim

Assess agronomic benefits and environmental impacts of using sludge as a low grade fetilizer,

To calibrate and validate the SWB-Sci model.

2.1 Field experiment

- Four cropping systems have been under investigation since 2004:
 - Dryland maize,
 - Irrigated maize oat rotation,
 - Dryland pasture, and
 - Lawn sod production.

2.2 SWB-Sci model calibration Forage and grain yield

2.2 SWB-Sci model calibration Forage and grain N uptake

2.3 SWB-Sci model validation Maize forage and grain yield

2.3 SWB-Sci model validation Maize forage and grain yield

3. Daily time step mechanistic computer model (SWB-Sci model) Scenario simulations aim

To investigate whether a single generic annual N release rate could be used across sites within an agro-ecological zone,

To generate sludge N mineralization rate data base across South African agro-ecological zones.

3.1 Hypotheses tested

- To achieve the stated aims, the following hypotheses were tested:
 - Under rainfed farming, cumulative annual N
 - mineralization from sludge-amended soils:
 - Will remain unchanged across agro-ecological zones,
 - Will not vary between seasons at a specific site, and
 - Will not vary across soil textures within a site.

3.1 Hypotheses 1a – Can a single annual N mineralization rate be used across agro-ecological zones?

- N mineralization varied significantly across agroecological zones.
 - Therefore no single recipe across agro-ecological zones.

3.1 Hypothesis 1b – Can a single annual N mineralization rate be used across sites within an agro-ecological zone?

3.2 Hypothesis 2 - Does annual N mineralization vary across years within a site? Eg. Polokwane

- N mineralization remained similar for 80% of the years.
 - Exceptions anomalous dry years.

94

380

• Therefore site specific generic annual N mineralization rate can be used.

3.2 Hypothesis 2 - Does annual N mineralization vary across years within a site? Eg. Durban

- N mineralization remained similar for 80% of the years.
 - Exceptions anomalous dry years.

94

980

• Therefore site specific generic annual N mineralization rate can be used.

3.3 Hypothesis 3 - Does annual N mineralization vary across soil textures within a site?

- N mineralization remained similar across soil textures in all agro-ecological zones.
- Therefore site specific single generic N mineralization rate can be used across soil textures.

<u>4. Development of user friendly</u> <u>database (SARA) model</u> <u>aim</u>

Estimate crop and site specific sludge application rate recommendations,

Estimate the economical distance that a sludge can be transported using commercial fertilizer as bench mark,

Assess environmental impact from heavy metal accumulation.

4. Model interface

4.1 First interface

Sludge Application Rate Adviser (SARA)

Welcome to Sludge Application Rate Advisor (SARA)

Sludge classification Sludge

Sludge Application Adviser

Sludge Application Expert

23

4.2 Sludge classification interface

Sludge classificatio	-					Transma .	×		
Microbial class									
Faecal coliforms	100				20	5	11		
Helminth ova	0.2				50	1	~(2)		
Pollutant class									
As	35	Cr	1000	Pb	250	Ni	i 400		
Cd	35	Cu	1400	Hg	10	Zn	2500		
Stability class									
	1		2			3		ß	
Comply with	one of the		Compy with one of the			N	lo stabilisati	on or vector	1000
options listed	l below on a	90	options lis	ted be	elow on a 75	attraction reduction options			
percentile basis percentile basis						171			
Option 1: Re	duce the ma	ass of	volatile solid	s by a	minimum of	38	percent		
Option 2: De	monstrate v	ector	attraction re	ductio	n with additio	nal a	anaerobic dig	jestion in a bench	-scale unit
Option 3: De	monstrate v	ector	attraction re	ductio	n with additio	nal a	aerobic diges	tion in a bench-s	cale unit
Option 4: Me	et a specific	oxyg	en uptake ra	ate for	r aerobically tr	eate	ed sludge		
Option 5: Us	e aerobic pro	ocesse	es at a temp	eratu	re greater tha	n 4	0 C (average	e temperature 45	C) for 14 days
Ontion 6: Ad	or longer (eg during sludge composting) Option 6: Add alkalina material to raise the pH under specific conditions								
Option 7: Re	duce moistu	re con	tent of slud	ae tha	at do not cont	ain	unstabilised s	solids (from treat	ment processes
oth	other than primary treatment) to at least 75 percent solids								
Option 8: Reduce moisture content of sludge with unstabilised solids to at least 90 percent solids									
Option 9: Inject sludge beneath the soil surface within a specified time, depending on the level of pathogen treatment									
Option 10: Incorporate sludge applied to or placed on the surface of the land within specified time periods after									
application to or placement on the surface of the land									
Sludge class									
-									
					Ala				

4.3 Farm, farmer and field entry interface

Adviser expert: Field		23
Fields Farm-id Province	1 Field-id 1 Eastern Cape City East Iondon	
Farmer's name	John	
Farm size (ha)	20.00	
Сгор	Maize Target yield (t/ha) 8.00	
Cropping system	Dry land 👻	
Sludge application method	Incorporated -	
Back Next	X Cancel	

4.4 Field soil information input interface

Adviser expert: Soil			23
Soil Soil textural class	Clay	•	
Soil bulk density	1400.00		
Clay (%)	10.0		
Soil Nitrate & Ammonium (mg/kg)	4.00		
Ammonium acetate extractable potassium (mg/kg)	8.00		
Soil plant available Phosphorus (mg/kg)	25.00	Analytical method P-Bray	•
🔞 Back 🔕 Next 🔀 Cancel			

4.4 Sludge properties input nterface

4.5 Sludge and inorganic fertilizer (K) recommendation

1	Adviser expert: Recommendation										
	Fa	arm-id	Field-id	Farm name	Year	Round	Туре			Moist	*
	▶	1	1	John	2014	1st year	Anaerobically digested pad	ldy dried for more th	nan 20 days		
		1	2	John	2014	1st year	Anaerobically digested pad	ldy dried for 10 or le	ss days		
	•									Þ	THE
								Sludge (top)	Potassium (ton)	
								370.5	rotassium (1.4	
ļ								570.5	_	1.4	
		🗿 Bao	ck 🗌	🔘 Next 🛛 💢 Can	cel						

4.6 Sludge fertilizer value interface

4.7 Heavy metal accumulation interface

model

Adviser	expert: Trace met	al adviser	dge Application Rate Advisor (SAR)				
Heav	Heavy metal accumulation						
	Sludge (mg/kg)	Soil (mg/kg)					
Cu	336.37	0.103	Application method Incorporated 👻				
Zn	2451	1.006	Plough depth (m) 0.5				
Hg	0.85	0.154	Sludge application rate (t/ha)				
Pb	66.76	0.015					
Cd	8.96	0.029					
Ni	81.11	0.743					
Cr	237.81	0.012					
As	6.21	0.004					
	Duration to reach environmental threshold level						
Time to reach environmental theshold level (years)							
	🔘 Back 🔘 Next 🔀 Cancel						

THANK YOU

Lead

Nickel

Cadmium

Field experiment

