Literature review on co-treatment of fecal sludge at sewage treatment plants

Characteristics of Fecal Sludge

The quality of fecal sludge from septic tanks has been characterized by various researchers. The following figures present the quality reported by different researchers.

The quality of fecal sludge varies significantly depending on the geographical and site variabilities, as well as the source and method of sludge handling. The FS quality indicators reported by different researchers indicate that FS sampled in many parts of the world, including samples from India (Chennai) is not of the quality reported by the USEPA for the US conditions. The pollution load from FS is considerably lesser in the samples analyzed by researchers, as presented in the following table.

The design for FS handling and treatment will need to incorporate detailed characterization of the FS to be treated on site and its impact on any existing sewage treatment plant (STP).

	The World - 5 Districts	Bank (2016) in Dhaka	Bassan	et al (2013	3)				Kone	etal (20	04)		Rashed et al (2006)	USEPA (1999)	Pradeep etal (n.d.)	Ligy ((201		Ingallinella (2002)
Parameter	11	22	3 ³	44	5⁵	6 ⁶	77	8 ⁸	9 °	10 ¹⁰	1111	12 ¹²	13 ¹³		1414	15 15	16 ¹⁶	1717
Total solids (mg/L)	19,420 to 57,272	12,778 to 72,694	8,984	11,820	19,0 00	,90 0	14,0 00	4,5 00	52,5 00	12,0 00	15,3 50	6,000 - 35,000	3,095	1,132 to 130,475	42,395	21 85	3,5 55	
Suspended Solids (mg/L)	17,868 to 55,484	10,852 to 70,896	7,077										3,068	310 - 93,378		71 2	110 3	5943
COD (mg/L)	300 to 672	480 to 687	7,607	10,725	13,5 00	7,8 00	15,7 00	7,1 00	49,0 00	7,80 0	15,7 00	4,200	1,243	1,500 to 703,000	59,745	90 5	1,4 60	4,243
BOD (mg/L)	118 to 306	266 to 447	1,237		2,24 0				7,60 0	840	2,30 0	750 - 2,600	434	440 to 78,600				754
COD:BOD Ratio	2.01 to 2.54	1.65 to 1.93	7										3					
NH4 - Nitrogen (mg/L)	20 to 1,100	130 to 1,900							3,30 0	330	415	150	91	3 to 116	1,323	16	32	146
Total nitrogen (mg/L)	30 to 10,700	200 to 1,400			2,10 0						1,10 0	190	150	66 to 1,060		94	58	191
Total Phosphorus (mg/L)	170 to 900	120 to 200											13	20 to 760	1,001	77	54	28
Total Volatile Solids (% of TS)			57	48	47	59	NA	70	68	59	73	50	2706	353 - 71,402	15,223	14 14	154 1	

¹ From Manual emptying

² From Mechanical emptying

³ From FS from septic tanks

⁴ Ouagadougou (From discharging trucks)

⁵ From Ouagadougou (From septic tanks)

⁶ Accra (From Septic tanks)

⁷ Dakar (From discharging trucks)

⁸ Dakar (from treatment plant receiving channel)

⁹ Accra (Ghana) Public Toilet Sludge

¹⁰ Accra (Ghana) (Septage)

¹¹ Bangkok (Thailand)

¹² Alcorta (Argentina) (Septage)

¹³ Albireh Septage

¹⁴ Devanahalli

¹⁵ Chennai - Summer

¹⁶ Chennai - Winter

¹⁷ Argentina

Planning and Design of fecal sludge treatment at STPs

Several researchers have developed guidelines to help design and operationalize co-treatment of FS at sewage treatment plants. The following table summarizes the guidance documents and literature available to help determine safe FS loading rates and design a co-treatment system.

S.No	Study / Document			Aspects covere	ed under the guidance	Reference
		OSS emptying	FS	Decanting	Co-treatment at STPs	
			characterization	Stations		
1	Septage			Theoretical	Provides guidance on co-treatment and estimating	MoUD
	Management in			guidance on	permissible load at STPs based on existing capacity	(2013)
	Urban India			components	utilization and technology.	
				of decanting		
				facility at STP		
2	Fecal Sludge			Guidance on	Siting treatment facility: "When choosing the treatment	SANDEC
	Management in			siting a	sites, it is very important to take into account the	(2002)
	Developing			decanting /	resistance or acceptance of the population neighboring	
	Countries: A			disposal	the site or the access roads. Possible negotiations for	
	Planning Manual			location for	compensation measures should be held early in the plan.	
				FS: The design	It is important to include surface for possible extensions	
				must avoid	of the plant and for buffer zones when purchasing or	
				high transport	reserving land for sludge treatment.	
				costs for		
				delivering	Safe loading of FS: "It is necessary to verify if the STP has	
				sludge to the	sufficient capacity to treat the additional pollution load	
				facility.	from FS. The most critical parameter is usually suspended	
				Safe	solids (SS). Other design parameters are COD, BOD5,	
				collection:	NH4-N.	
				Appropriate		
				incentive	Co-treatment of liquids with sewage: Effluents from	
				systems	primary FS treatment can be treated together with	
				should make	sewage if a sewage treatment plant is existing or planned.	
				sure that all	The primary treatment mainly eliminates the suspended	
				collected fecal	solids and the STP can then treat much higher volumes of	
				sludge	liquid effluent than of raw FS. This option can be	
				reaches the	considered when there is existing or planned a sewage	
				plant.	treatment plant, and when its capacity is not sufficient to	
					treat raw FS. It is necessary to verify if the STP has	
					sufficient capacity to treat the additional pollution load	
					from pre-treated FS. The greatest part of suspended	

S.No	Study / Document			Aspects cove	ered under the guidance	Reference
ſ		OSS emptying	FS	Decanting	Co-treatment at STPs	-
			characterization	Stations		
ľ					solids will be removed in primary treatment. The critical	
ľ					parameters will therefore be BOD5 and COD, further	
					important are remaining SS and NH4-N.	
3	Solids Separation		Human Excreta:		Three critical variables should be considered when	SANDEC
ľ	and Pond Systems		Per Capita		planning to co-treat wastewater and faecal sludge, viz.	(1998)
ľ	For the Treatment		Quantities,		organic loading rate, solids load and	
ľ	of Faecal Sludges		Characteristics,		ammonium/ammonia nitrogen concentration.	
ľ	In the Tropics		Classification			
ľ	Lessons Learnt		and Comparison		Recommendation for Solids-Liquid Separation Prior to	
ľ	and		of FS, Heavy		Pond Treatment, design guidelines for settling /	
ľ	Recommendations		Metal		thickening.	
ľ	for Preliminary		Concentrations			
ľ	Design		in Septage		Additional detailed guidance from this reference is	
					included in Annex 1.	
4	Decentralized		Typical FS		Discusses septage addition at:	USEPA
ľ	Systems		characteristics		1. To Upstream Sewer Manhole: When septage is added	(1999)
ľ	Technology Fact		for domestic		to a sewer upstream of the wastewater treatment plant,	
ľ	Sheet Septage		septage		substantial dilution of septage occurs prior to it reaching	
ľ	Treatment/				the wastewater treatment plant. This method is only	
ľ	Disposal				feasible with large sewers and treatment plants. It is	
ľ					economical due to the very simple receiving station	
ľ					design. F7However, there is the potential for grit and	
ľ					debris to accumulate in the sewer and for odor problems	
ľ					near the manhole	
ľ					2. To Plant Headworks: Septage can be added to sewage	
ľ					immediately upstream of the screening and grit removal	
I					processes. This method, like the one mentioned above, is	
ľ					economical because of the very simple receiving station	
I					design. It also allows the wastewater treatment plant	
I					staff to have control of the septage discharge.	
I					3. To Sludge Handling Process: This method reduces the	

S.No	Study / Document			Aspects cove	ered under the guidance	Reference
		OSS emptying	FS	Decanting	Co-treatment at STPs	-
			characterization	Stations		
					loading to liquid stream processes, and it eliminates the	
					potential for affecting effluent quality. However, there	
					could be an adverse effect on the sludge treatment	
					processes such as dewatering. Adding septage to the	
					sludge handling process may also cause clogging of the	
					pipes and increase wear on the pumps if the septage is	
					not screened and degritted in the receiving station.	
					4. To Both Liquid Stream and Sludge Handling Processes:	
					Septage can also be pretreated to separate liquid and	
					solid fractions, which are then processed accordingly.	
					This provides more concentrated sludge for processing	
					and reduces the organic loading to liquid stream	
					processes and the hydraulic loading to sludge processes.	
					Increased operations are required for septage	
					pretreatment at the receiving station.	
5	Septage				Guidance on	Rohilla et al
	Management: A				1. Septage directly mixed with sewage	(2017)
	Practitioner's				2. Septage treated with the sludge of an STP.	
	Guide				Key considerations for septage directly mixed with	
					sewage:	
					 a) The quality, and not just the quantity, of the sludge, must be evaluated. 	
					b) It must be ascertained beforehand whether the septage and sludge contain any toxic chemicals that can	
					destroy biological communities. The presence of trash,	
					grit, and trade and industrial sludge can be toxic and	
					impact biological processes.	
					c) Consistent compliance of STPs might be an issue	
					Septage co-treated with STP sludge: This is a better	
					option because most STPs have land for sludge drying and	

S.No	Study / Document			Aspects covere	ed under the guidance	Reference
	-	OSS emptying	FS	Decanting	Co-treatment at STPs	
			characterization	Stations		
					dewatering. Sludge dewatering sites needs to be	
					improved a bit by designing proper sludge drying beds.	
					Geobags	
					to dewater the septage or sludge can be developed as an	
					alternative option to sludge drying bed. The liquid	
					fraction from sludge or septage can be directed to the	
					STPs. This is a much better option than directly mixing	
					septage into the liquid stream of STPs. Septage, after	
					dewatering, and sludge from STPs can be treated	
					together through co-composting, pyrolysis etc. This	
					solution is feasible only in STPs in the vicinity of the target	
					city, otherwise, sludge transportation	
					cost will be prohibitive.	
6	USEPA Guide To	Guidance on	Typical FS	Examples of	See Figure on different approaches and advantages /	USEPA
	Septage	septic tank	characteristics	septage	disadvantages of each. Potential impacts of septage	(1994)
	Treatment and	emptying:	for domestic	receiving	addition:	
	Disposal	Types of	septage	stations	1. Increasing volume of screenings and grit requiring	
		pumps,		(typical	disposal	
		procedures		design),	2. Increased odor emissions	
		for emptying		record	3. Scum accumulation in clarifiers	
		(including		keeping	4. Increased organic loading to biological processes	
		precautions),		requirements,	5. Increased loadings to sludge handling processes	
		transportation		example of	6. Increased sludge volumes	
		requirements		septage and	7. increases housekeeping requirements	
				sludge		
				manifest,	Guidance on odor control approaches (operational and	
				0&M	physico-chemical)	
				checklist,		
7	Co-treatment of		"The formulae		Includes operational and design guidance for the co-	SANDEC
	Faecal Sludge and		and diagrams		treatment of faecal sludge in waste stabilisation ponds	(1999)
			which were		and in activated sludge sewage treatment plants.	

S.No	Study / Document			Aspects cover	ed under the guidance	Reference
	-	OSS emptying	FS	Decanting	Co-treatment at STPs	
			characterization	Stations		
	Wastewater in		developed by			
	Tropical Climates		USEPA to		For co-treatment in waste stabilisation ponds, FS solids	
			determine the		should first be separated by sedimentation or in sludge	
			allowable rate		drying beds. The high ammonia content, especially in	
			of septage		fresh faecal sludges, can inhibit algae growth in the	
			addition are		facultative ponds. Therefore, when calculating the	
			based on a		permissible additional faecal sludge load, ammonia is a	
			standard value		relevant design parameter besides BOD.	
			for BOD			
			concentrations		Additional detailed guidance from this reference is	
			in faecal sludge		included in Annex 1.	
			(7,000 mg/l).			
			However, the			
			quality of FS in			
			many cities of			
			tropical			
			countries varies			
			greatly,			
			particularly			
			where the faecal			
			sludge is			
			composed of a			
			mixture of			
			septage and			
			highly			
			concentrated			
			sludges from			
			latrines or from			
			unsewered			
			public toilets."			

S.No	Study / Document			Aspects covere	ed under the guidance	Reference
		OSS emptying	FS	Decanting	Co-treatment at STPs	
			characterization	Stations		
8	Faecal Sludge		Includes	Types of	Detailed guidance from this reference is included in	Strauss et al
	Management		detailed	transfer	Annex 1.	(2014)
	Systems Approach		guidance on FS	stations, siting		
	for		characterization,	considerations		
	Implementation		and the impact	for transfer		
	and Operation		of different	stations,		
			water quality	hazards in		
			parameters on	handling FS at		
			treatability and	transfer		
			co-treatment	stations,		
			performance.			
			Use of FS			
			quality			
			parameters in			
			design: The			
			researchers			
			recommend			
			using COD over			
			BOD to measure			
			organic matter.			
			Advantages of			
			COD over BOD5			
			include: (i) a			
			rapid analysis			
			(e.g. hours as			
			opposed to 5			
			days), (ii) more			
			detailed and			
			useful			
			information			

S.No	Study / Document			Aspects cover	ed under the guidance	Reference
		OSS emptying	FS	Decanting	Co-treatment at STPs	
			characterization	Stations		
			including all			
			degradable and			
			undegradable			
			organics, and			
			(iii) the potential			
			for the organics			
			balance to be			
			closed (on a			
			COD basis). Of			
			the two COD			
			analytical			
			determination			
			methods, the			
			dichromate			
			method is			
			preferred, as the			
			permanganate method does			
			not fully oxidise			
			all organic			
			compounds			
	Treating Faecal	FS			Effect of FS TS, VSS, and Ammonia on WSP performance.	Strauss et al
	Sludges in Ponds	characteristics			When treating FS in ponds, be it separately or in	(2000)
					conjunction with wastewater, settleable solids must be	(,
					separated in primary treatment units in order to	
					guarantee an undisturbed treatment of the liquid	
					fraction. Process disturbance by improper design and	
					operation for solids separation has been repeatedly	
					observed	
					The rate of accumulation of settleable solids, hence, the	

S.No	Study / Document			Aspects cove	ered under the guidance	Reference
		OSS emptying	FS	Decanting	Co-treatment at STPs	
			characterization	Stations		
					required solids storage volume, is the decisive design	
					criteria for preliminary settling/thickening units or for	
					solids storage compartments in primary ponds.	
					Batch-operated settling/thickening is, in most cases, the	
					technology-of-choice in developing countries, as electro-	
					mechanical installations for continuous sludge removal	
					may not prove sustainable. Primary ponds may constitute	
					an alternative to settling tanks where this proves feasible	
					for reasons of land availability, construction cost and	
					solids removal operations. Such ponds can be designed as	
					deep ponds to comprise a compartment for solids accumulation, with pond emptying intervals of > 1 year.	
					However, the solids removal from the storage	
					compartment may pose great technical difficulties. The	
					handling of biosolids accumulated in pre-settling tanks or	
					in shallow primary ponds is easier compared with deep	
					primary ponds.	
					The authors hypothesise that rates of up to 600-700 g	
					BOD/m3·day might be tolerated in tropical climate as	
					against 300-350 g BOD/m3·day for wastewater ponds.	
					Although most septage has usually been stored for	
					months or years prior to collection, it has become	
					apparent that, in many cases, it is still conducive to	
					anaerobic degradation.	
					Anaerobic degradation of medium to high-strength FS can	
					be impaired by toxicity due to high ammonia (NH3)	
					concentrations. NH3-N threshold levels in the influent to	

S.No	Study / Document		Aspects covered under the guidance						
		OSS emptying	FS	Decanting	Co-treatment at STPs				
			characterization	Stations					
					anaerobic ponds in the				
					tropics should not exceed 400-500 mg/l.				

Fecal sludge co-treatment experience

Table X summarizes examples of fecal sludge co-treatment at a sewage treatment plant (STP) from different countries. There is limited information available on the practice of co-treatment, and lesser still on the specific experience and design / operation details from sites where the practice of co-treatment is occurring. Anecdotal information on FS treatment at STPs is available and summarized in the following table.

S.No	Study / Document	Country / Region	Description of co-treatment experience	Level of detail available
1	Regional Siting Of Fecal Sludge Treatment Facilities: St. Elizabeth, Jamaica, Ana Martha Fernandes ¹⁸	Jamaica	Brief reference to practice of co- treatment at 2 existing STPs in St. Elizabeth, Jamaica, however this practice has not been continued due to prohibitive cost of transportation	Brief mention of practice
2	A Review Of Fecal Sludge Management In 12 Cities ¹⁹	Santa Cruz, Bolivia	The private operators transport the FS to a water and sanitation cooperative run (SAGUAPAC) treatment plant. 60% of the waste emptied is transported to treatment but the balance is dumped illegally in the environment. The treatment efficiency is understood to be good and 100% of the sludge delivered is treated and discharged. Only 9% of FS generated from OSS is treated. This cooperative receives and treats sludge from 25 sludge collection services (10,000 m3 / month).	Reference to the practice, and share of FS in the city that is treated at WWTP
3	A Review Of Fecal Sludge Management In 12 Cities ²⁰	Managua, Nicaragua	50% of the mechanically emptied FS is transported to the water and sanitation provider's (ENACAL) WWTW. The balance is discharged illegally.	Reference to the practice, and share of FS in the city that is treated at WWTP

¹⁸ Fernandes (2005).

¹⁹ "WSP (2013); Furlong (2017)"

²⁰ WSP (2013)

S.No	Study /	Country /	Description of co-treatment	Level of detail
	Document	Region	experience	available
	Document	Region	experience Six of the 10 known collection companies discharge their fecal sludge at the wastewater treatment plant. Nicaragua's national drinking water and sanitation enterprise, ENACAL, charges them US\$0.30/m3. The collection companies generate a monthly sludge volume of 863.51m ³ and fees amounting to US\$3,165.16 (ENACAL 2011). These figures suggest that the plant's capacity for the treatment of sludge is probably greater than what it	available
4	A Review Of Fecal Sludge Management In 12 Cities ²¹	Maputo, Mozambique	receives. Dumping of FS in Infulene WWTW is permitted; this is operated by Municipality but operates at only 50% efficiency.	Reference to the practice, and share of FS in the city that is treated at WWTP
5	A Review Of Fecal Sludge Management In 12 Cities ²²	Kampala, Uganda	Dumping of FS in Bugolobi WWTW is permitted; this is operated by NWSC; efficiency is estimated to be 75% (nominal). Faecal sludge that is removed from the plot through manual or mechanical means is disposed of at designated wastewater treatment plants. Operators need a license to transport faecal sludge, but this is seldom enforced	Reference to the practice, and share of FS in the city that is treated at WWTP
6	Faecal Sludge Management In Botswana: A Review Of Current Practices And Policies Using The Case Of Gaborone	Botswana, Gaberone	The FS sludge from pit latrines is treated with municipal wastewater at the Gaborone Wastewater Treatment plant, 10 km northeast of Gaborone City. Due to limited methods of treatment and disposal of FS from pit latrines, sludge management	Reference to the practice and challenges

²¹ "WSP (2013); WSP(2012)"

²² "WSP (2013); WRC (2015)"

S.No	Study /	Country /	Description of co-treatment	Level of detail	
	Document	Region	experience	available	
	Low Income Areas ²³		has become an integral part of the wastewater treatment plants across the country (FS is mixed with sewage at the inlet to the STP).		
7	The Status Of Faecal Sludge Management In Eight Southern And East African Countries ²⁴	South Africa	Vacuum tanks usually dispose of faecal sludge at the municipal wastewater treatment plants. In a number of municipalities, these plants struggle to meet regulatory requirements.		
			In the urban areas of South Africa, faecal sludge is usually added to the wastewater stream where it is subject to co-treatment in wastewater treatment plants, as well as waste stabilisation ponds	Plant configuration, size of units, removal efficiencies at each stage of treatment	
8	Cotreatment of sewage and septage in waste stabilization ponds	Alcorta, Argentina	System of two waste stabilization ponds in series was put into operation in the town of Alcorta. Both wastewater and septage were cotreated in a pond stabilization system with two ponds in series. The vacuum trucks discharge directly into the first pond. Due to high contents of solids of septage, the primary pond had reduced its capacity by half. Construction of two septage ponds was undertaken to address this issue.		
9	Domestic Septage Characteristics and Cotreatment Impacts on Albireh Wastewater Treatment Plant Efficiency	Albireh, Palestine	The study modeled the impact of FS after detailed characterization using a modeling software Albireh city has a central public sewer network of a modified combined system, where part of the collected stormwater is mechanically treated at AWWTP		

²³ Odirile etal (2018) ²⁴ "WRC (2015); WRC (2012)"

S.No	Study /	Country /	Description of co-treatment	Level of detail	
	Document	Region	experience	available	
			site in the stormwater tank.		
			Samples were collected from		
			different septage haulers		
			delivering septage from different		
			places in Albireh at different		
			times.		
			ANAwin was used to simulate the		
			impact of septage increment (%)		
			on the unit operation design of		
			the aeration tank including		
			structural and biological design		
			parameters at variable		
			temperatures		
10	FSM Handbook	South Africa	Two activated sludge WWTPs		
			located in eThekwini, South Africa		
			were receiving low volumes of FS		
			from pit latrines. experienced		
			serious operational problems		
			caused by the high loads of		
			organics, nitrogen compounds and		
			suspended solids		
11	FSM Handbook	Saint Marten,	On the island of Saint Marten,		
		Netherlands	wastewater and septic tank sludge		
		Antilles	were discharged into the existing		
			Illidge Road WWTP. The plant		
			consisted of an Imhoff tank, buffer		
			tank, secondary settling tank and		
			sludge drying beds. The plant		
			capacity was considerably		
			exceeded by the wastewater flow		
			rate (of at least 65 m3/h) and the		
			high FS volumes that in a typical		
			working day accounted for an		
			equivalent of about 175 m3/day.		
			During retrofit to a Modified		

S.No	Study /	Country /	Description of co-treatment	Level of detail
	Document	Region	experience	available
			Bardenpho (A2O) process design,	
			different scenarios were	
			evaluated through mathematical	
			modelling.	
12	FSM Handbook	Manila,	Activated sludge systems have	
		Philippines	recently been chosen in the	
			Philippines as the main biological	
			treatment process for FS	
			treatment. Manila Water's FS	
			operations with septic tank sludge	
			currently utilise a FS treatment	
			with activated sludge in the	
			Manila South septage treatment	
			plant. The plant is able to treat up	
			to 814 m3 per day of FS.	

The following table summarizes the challenges observed and approaches adopted at sites that were cotreating FS at STPs.

S.No	Study / Document	Country / Region	Challenges	Year of study	Reference
1	Regional Siting of Fecal Sludge Treatment Facilities: St. Elizabeth, Jamaica, Ana Martha Fernandes	Jamaica	Cost of transportation by trucks was prohibitive	2005	Fernandes (2005).
2	A Review of Fecal Sludge Management in 12 Cities	Santa Cruz, Bolivia		2013; 2017	WSP (2013) Furlong (2017)
3	A Review of Fecal Sludge Management in 12 Cities	Managua, Nicaragua		2013	WSP (2013)
4	A Review of Fecal Sludge Management in 12 Cities	Maputo, Mozambique		2013	WSP (2013) WSP(2012)
5	A Review of Fecal Sludge	Kampala, Uganda	Most of the wastewater treatment plants are designed	2013	WSP (2013)

S.No	Study / Document	Country / Region	Challenges	Year of study	Reference
	Management in 12 Cities		for wastewater treatment and not faecal sludge. Overloading of plants has been reported at some of the plants		WRC (2015)
6	Faecal Sludge Management in Botswana: A Review of Current Practices and Policies Using the Case of Gaborone Low Income Areas	Botswana, Gaberone	indiscriminate practice of co- treatment has caused the wastewater treatment plant to malfunction due solids over load.		Odirile etal (2018)
7	The Status Of Faecal Sludge Management In Eight Southern And East African Countries	South Africa	Part of the problem might be the vacuum tanks that discharge their sludge into the inlet structure of the wastewater treatment plant. This might cause shock loads. There seems to be little experience regarding the treatment process and there are no established strategies to deal with problems. The mechanism of WWT plant failure is not clearly understood. In one case, the removal of secondary solids from the works was limited by the number of truckloads of solids arising from secondary sludge from the plant that could be removed in a month, in terms of operating costs, and the willingness of the receiving landfill to accept the material. Thus when large volumes of fairly dry pit sludge were added to the works, with relatively little addition of biodegradable material, the solids report fairly soon as secondary sludge. The sludge could not be removed at an accelerated rate, and thus	2015	WRC (2015) WRC (2012)

Study / Document	Country / Region	Challenges	Year of study	Reference
Document Document Co-treatment of sewage and septage in waste stabilization ponds	Region Alcorta, Argentina	 was retained in the system for an extended period. It was clearly a case of taking one solids problem and making it into another solids problem. Secondly, the very high load of nitrogen added to the works appeared to inhibit or otherwise deactivate the nitrification capacity of the works, and in this particular case, it took the works several months to recover. Thus while co-treatment in a conventional WWTP seems a convenient disposal route, it is not a sustainable or successful one. Without pre-treatment, the solids loading from FS greatly impacted the available volume in the stabilization ponds, and impacted plant performance. The great difference in total solids between septage and sewage makes it necessary to pretreat the septage before its discharge into conventional treatment. Addition of a sludge pre- treatment unit (sedimentation ponds) helped achieve an effluent that was similar in quality to domestic sewage, 	1998	Ingallinella (2002)
Domestic Septage Characteristics and Co- treatment Impacts on Albireh Wastewater	Albireh, Palestine	WSPs. FS co-treatment exerted additional energy consumption due to additional oxygen demand in the oxidation ditches for the biological processes. The daily average energy costs for septage treatment was calculated at		Ingallinella (2002).
	Document Document Co-treatment of sewage and septage in waste stabilization ponds Domestic Septage Characteristics and Co- treatment Impacts on Albireh	DocumentRegionDocumentRegionRegionAlcorta,AlcortaAlcorta,ArgentinaArgentinaseptage in waste stabilization pondsAlcorta,ArgentinaArgentinaSeptage in waste stabilization pondsAlbireh,PalestineAlbireh, PalestineDomestic treatment Impacts on AlbirehAlbireh, Palestine	DocumentRegionWas retained in the system for an extended period. It was clearly a case of taking one solids problem and making it into another solids problem. Secondly, the very high load of nitrogen added to the works appeared to inhibit or otherwise deactivate the nitrification capacity of the works, and in this particular case, it took the works several months to recover. Thus while co-treatment in a conventional WWTP seems a convenient disposal route, it is not a sustainable or successful one.Co-treatment of sewage and stabilization pondsAlcorta, ArgentinaWithout pre-treatment, the solids loading from FS greatly impacted the available volume in the stabilization ponds, and isolas between septage and sewage makes it necessary to pretreat the septage before its discharge into conventional treatment.Domestic Septage Characteristics and Co- treatmentAlbireh, PalestineFS co-treatment exerted additional energy consumption due to additional oxygen demand in the oxidation fue to additional energy consumption due to additional energy consumption due to additional energy consumption due to additional energy consumption	DocumentRegionWas retained in the system for an extended period. It was clearly a case of taking one solids problem and making it into another solids problem. Secondly, the very high load of nitrogen added to the works appeared to inhibit or otherwise deactivate the nitrification capacity of the works, and in this particular case, it took the works several months to recover. Thus while co-treatment in a conventional WWTP seems a convenient disposal route, it is not a sustainable or successful one.Co-treatment of sewage and septage in waste stabilization pondsAlcorta, ArgentinaWithout pre-treatment, the solids loading from FS greatly impacted the available volume in the stabilization ponds, and impacted plant performance. The great difference in total solids between septage and sewage makes it necessary to pretreat the spetage before its discharge into conventional treatment.1998Domestic Septage PalestineAlbireh, PalestineFS co-treatment exerted additional energy consumption due to additional oxygen demand in the oxidation processes. The daily average energy costs for septage

S.No	Study /	Country /	Challenges	Year of study	Reference
	Document	Region			
			The modeling indicated: 1. An increase in the aeration capacity (8-49%) must be achieved to cope with additional loads of both organic carbon and nitrogen; otherwise deficient oxygenation will lead to build-up of nitrite, less nitrification capacity and might cause sludge foaming/bulking. 2. 5-30% of septage addition implies overloading of the system and lead to 7-51% additional volume in the aeration tank. 3. Continuous co-treatment of septage will dramatically affect the issue of non-compliance		
10	FSM Handbook	South Africa	related to COD and nitrogen. A complete inactivation of the nitrification process was observed in one of the plants, which took several months to recover. The researchers suggested that this was a result of the excessive nitrogen load discharged into the plant and that the aeration capacity was exceeded as a consequence of the high loads discharged At the other plant under study, the high solids overloading made it practically impossible to remove the excess sludge generated as it was equal to the sludge volume produced in a month. Sludge removal was limited by the number of truckloads that could be removed, increasing associated operational costs and even the	2012	Strauss et al (2014)

S.No	Study / Document	Country / Region	Challenges	Year of study	Reference
			willingness of the receiving landfill to accept the material.		
11	FSM Handbook	Saint Marten, Netherlands Antilles	Higher concentrations of unbiodegradable compounds and low biodegradability of organics in FS hindered compliance with the effluent limits.		Strauss et al (2014)
			Due to the loads of unbiodegradadable particulate organic matter and unbiodegradable soluble organic nitrogen from the digested FS, the modeling study suggested that the proposed plant would only be able to comply with most of the discharge limits when the FS volumes comprise of no more than 2.8% of the influent. However, as a consequence of the high nitrogen load and slow biodegradable organics, the study also speculated that the nitrogen limits will probably not be met at the new plant.		
12	FSM Handbook	Manila, Philippines	Currently, the plant handles about 40-50% of its maximum capacity, indicating that there is still room for growth. In addition, the septage management system of the Baliwag water district has decided to build a septage treatment plant that utilises a sequencing batch reactor as a secondary treatment process.		Strauss et al (2014)

S.No	Study /	Country /	Challenges	Year of study	Reference
	Document	Region			
			These experiences indicate that		
			co-treatment of FS in aerobic		
			biological systems can be		
			feasible and satisfactory if the		
			design is adequate to cope with		
			the FS influent, there is		
			adequate operator capacity		
			and competence, and an		
			appropriate management		
			scheme is implemented.		

References:

- Bassan et al (2013). Characterization of faecal sludge during dry and rainy seasons in Ouagadougou,
 Burkina Faso, M. Bassan, T. Tchonda, L. Yiougo, H. Zoellig, I. Mahamane, M. Mbéguéré, and L.
 Strande, 36th WEDC International Conference, Nakuru, Kenya, 2013
- Fernandes (2005). Regional Siting of Fecal Sludge Treatment Facilities: St. Elizabeth, Jamaica, Ana Martha Fernandes, Tufts University, 2005
- Furlong (2017). SFD Promotion Initiative Santa Cruz, Bolivia, Claire Furlong, 2017
- Ingallinella (2002). Cotreatment of sewage and septage in waste stabilization ponds. A.M. Ingallinella, G. Sanguinetti, R.G. Fernández, M. Strauss and A. Montangero, Water Science and Technology Vol 45 No 1 pp 9–15 © IWA Publishing 2002
- Kone and Strauss (2004). Low-cost Options for Treating Faecal Sludges (FS) in Developing Countries Challenges and Performance, 9th International IWA Specialist Group Conference on Wetlands Systems for Water Pollution Control and to the 6th International IWA Specialist Group Conference on Waste Stabilisation Ponds, Avignon, France, 27 Sept. – 1 Oct., 2004
- Krithika etal (2016). Spatio-temporal variation of septage characteristics of a semi-arid metropolitan city in a developing country, D. Krithika, Anu Rachel Thomas, Gomathy R. Iyer, Martin Kranert, Ligy Philip, Environ Sci Pollut Res DOI 10.1007/s11356-016-8336-z, 2016
- MoUD (2013). Septage Management in Urban India, Ministry of Urban Development, 2013
- Odirile etal (2018). Faecal Sludge Management in Botswana: A Review of Current Practices and Policies Using the Case of Gaborone Low Income Areas, Phillimon T. Odirile, Innocent Thukwi, Ontiretse Dintwa, Bontle Mbongwe, Journal of Environmental Protection, 2018, 9, 122-139
- Pradeep etal (n.d.). Characteristics of Faecal Sludge generated from Onsite Systems located in Devanahalli, Rohini Pradeep, Sarani.S, Susmita. S, Presentation at FSM 4 Conference
- Rashed et al (2006). Domestic Septage Characteristics and Cotreatment Impacts on Albireh Wastewater Treatment Plant Efficiency, Rashed M.Y. A/-Sa'edand Taghreed M. Hithnawi , Dirasat, EngineeringSciences, Volume 33, No.2, 2006
- Rohilla et al (2017). Septage Management: A Practitioner's Guide, Suresh Kumar Rohilla, Bhitush Luthra, Amrita Bhatnagar, Mahreen Matto and Uday Bhonde, Centre for Science and Environment, New Delhi, 2017
- SANDEC (1998). Solids Separation and Pond Systems for the Treatment of Faecal Sludges In the Tropics Lessons Learnt and Recommendations for Preliminary Design, SANDEC Report No. 05/98, June 1998
- SANDEC (1999). Co-treatment of Faecal Sludge and Wastewater in Tropical Climates, Udo Heinss and Martin Strauss, EAWAG Swiss Federal Institute for Environmental Science & Technology, SANDEC Dept. for Water and Sanitation in Developing Countries, 1999

- SANDEC (2002). Fecal Sludge Management in Developing Countries: A Plannng Manual, Florian Klingel , Agnès Montangero, Doulaye Koné, and Martin Strauss, 1st Edition , April 2002, Swiss Federal Institute for Environmental Science and Technology Department for Water and Sanitation in Developing Countries
- Strande et al (2014). Faecal Sludge Management, Systems Approach for Implementation and Operation, Linda Strande, Mariska Ronteltap, Damir Brdjanovic, IWA Publishing, 2014
- Strauss and Montangero (n.d). Feacal Sludge Management Review of Practices, Problems and Initiatives, Martin Strauss and Agnes Montangero, EAWAG/SANDEC
- Strauss et al (2000). Treating faecal sludges in ponds. Strauss, M., Larmie, S. A., Heinss, U., & Montangero, A. Water Science and Technology, 42(10), 283-290
- Strauss et al(2002). Fecal Sludge Management in Developing Countries: A planning manual, Florian
 Klingel , Agnès Montangero, Doulaye Koné, and Martin Strauss, 1 s t E d i t i o n , Swiss Federal
 Institute for Environmental Science and Technology, Department for Water and Sanitation in
 Developing Countries, A p r i l 2 0 0 2.
- The World Bank (2016). Fecal Sludge Management: Diagnostics for Service Delivery in Urban Areas, Case Study Reports, April 2016
- USEPA (1999). Decentralized Systems Technology Fact Sheet Septage Treatment/Disposal, EPA 932-F-99-068, September 1999
- WRC (2012). Tackling the Challenges of Full Pit Latrines Volume 1: Understanding sludge accumulation in VIPs and strategies for emptying full pits, Report to the Water Research Commission by David Still and Kitty Foxon, July 2012.
- WRC (2015). The Status of Faecal Sludge Management in Eight Southern and East African Countries, Sanitation Research Fund for Africa (SRFA) Project of the Water Research Commission and the Bill and Melinda Gates Foundation, May 2015
- WSP (2012) Living without Sanitary Sewers in Latin America The Business of Collecting Fecal Sludge in Four Latin American Cities, Water and Sanitation Program, March 2012
- WSP (2013). A Review of Fecal Sludge Management in 12 Cities, Water and Sanitation Program, March 2013

Annex 1: Detailed guidance from relevant literature on design of FS co-treatment systems

Design considerations for co-treatment (SANDEC, 1998)

The problems described in this paper which may arise when treating faecal sludge in pond systems are also relevant for the combined treatment of FS and sewage in waste stabilisation ponds (WSP). Three critical variables should be considered when planning to co-treat wastewater and faecal sludge, viz. organic loading rate, solids load and ammonium/ammonia nitrogen concentration.

• Organic loading rate: Anaerobic and facultative ponds are sensitive to excessive organic (BOD) loading. In anaerobic ponds, the most serious symptomatic problem resulting from overloading is odour nuisance. In facultative ponds, it will impair the development of aerobic conditions and algal growth. The permissible additional faecal sludge load is dependent on the initial organic load exerted by the wastewater and on the loading rates for which the ponds were originally designed.

• Solids load: Ponds may fill up at undesirably fast rates due to high solids contents in FS. Options for pretreatment of FS are described in Chpt. 4. Separation of the FS solids prior to treating the liquid in wastewater stabilization ponds contributes to optimum WSP performance and to minimising shortcircuiting and sludge removal operations.

• Ammonia nitrogen: The maximum NH3 concentration tolerated by the algae in the facultative pond is an additional factor influencing the permissible FS load in a WSP system. Under the conditions prevailing in facultative ponds in tropical climates ($T \ge 25-28$ °C; pH 7.5 - 8), ammonia (NH3) amounts to 2-6 % of the ammonium (NH4) concentration. If the permissible NH3-N concentration in facultative ponds is set at 20 mg/l, and assuming that 5 % of NH4 are NH3, the maximum NH4-N concentration of the combined waste in the influent to the facultative pond amounts to 400 mg/l. The bulk of the septage, usually stored for a period of up to several years, does not exhibit very high NH4-N concentrations.

Fresh FS such as public toilet sludge, however, may contain NH4-N concentrations of up to 5,000 mg/l.

SANDEC (1999)

1. Excessive organic (BOD) loading rates may lead to overloading of the anaerobic and facultative ponds. This overloading causes odour problems and prevents the development of aerobic conditions in the facultative pond.

2. Ponds may fill up with sludge at undesirably fast rates due to the high solids content of FS.

3. Fresh, undigested excreta and FS contain high NH4 concentrations. These may impair or even prevent the development of algae in facultative ponds.

Preventive measures, such as the addition of a solids separation step ahead of the first pond, and the consideration of a maximum admissible FS load can avoid the aforementioned problems.

Discusses design parameters when co-treating at WSP for:

- 1. Organic loading rates:
- 2. Ammonia concentration and toxicity levels (Faecal sludges which have been stored over an extended period, e.g. septage, usually exhibit NH4-N concentrations of 400 mg/l. Fresh FS from unsewered low or zero flush toilets may contain NH4-N concentrations of 5,000 mg/l which would lead to an algae growth inhibition if excessive quantities were mixed. The guidance includes design example to estimate permissible FS loading based on NH3 concentration.
- 3. Solids accumulation: The high solids concentrations found in most faecal sludge, require pretreatment of FS by solids-liquid separation, e.g. in batch operated settling/thickening tanks. This will prevent problems from occurring when having to handle large quantities of settled sludge from large primary ponds at intervals of one or more years. The guidance includes design parameters for Sedimentation/thickening tanks and sludge drying beds for solids pre-treatment.

Includes design examples to estimate permissible loading in ASP at various processes – upstream of aeration process and design of critical units, and addition to the sewage sludge stream.

Strande et al (2014)

Co-treatment in WSPs:

- 1. Waste stabilisation ponds can be used for the co-treatment of wastewater with the effluent following solid-liquid separation of FS in settling-thickening tanks
- 2. Problems have been reported by researchers when dosing FS after screening directly into the anaerobic pond.
- 3. Typically, due to the high ammonia concentration and high organic loads and solid content, treating solely FS in WSPs is not recommended, nor is the addition of large quantities

Recommendation:

WSPs can be used for the co-treatment of FS and can treat liquid byproducts of other FS treatment technologies, including:

- Leachate from unplanted and planted drying beds. Leachate is low in organic matter compared to domestic wastewater and direct discharge into the facultative pond might be possible as the solid fraction is relatively low. However, the ammonia concentration can still present a problem, and algae and methanogenic inhibition by free ammonia can also occur.
- Effluent from settling-thickening tanks. This was implemented in Argentina as co-treatment with the influent of anaerobic ponds, where tests were conducted for the treatment of the effluent from settling ponds. This solution has also been adopted in Dakar, Senegal, where preliminary solid/liquid separation is done by settling tanks, the effluent is co-treated with wastewater in a WSP, and the thickened sludge is dewatered with unplanted drying beds.

Advantages and constraints of co-treating in WSPs:

- WSPs are simple to build and have relatively low O&M requirements.
- Technology is appropriate for tropical climates given land is available
- FS addition without solids separation could result in high rate of solids accumulation and potential inhibition due to high salt and ammonia concentrations. The removal of sludge that accumulates in the anaerobic ponds may require heavy mechanical equipment.

Co-treatment at STPs:

The authors do not recommend co-treatment of FS with wastewater as a common practice in lowincome countries. A co-management option could include co-management of FS with the sludge produced during wastewater treatment.

Challenges with co-treatment:

- 1. WWTPs are typically not designed for FS loadings, and process disruptions and failures are frequently possible.
- 2. Common problems with co-treatment of FS in WWTPs range from the deterioration of the treated effluent quality to overloading tanks and inadequate aeration.

Considerations for co-treatment:

- Transport of FS to STP: Uncontrolled dumping of FS into sewers needs to be carefully regulated and prevented. The considerably higher solids content of FS may lead to severe operational problems such as solids deposition and clogging of sewer pipes. Hence, the first step in designing a co-treatment system includes determining how the FS will be transported to the treatment facility and discharged into the influent stream.
- 2. Detailed guidance on limiting FS to ensure a) treated water quality; b) adequate aeration capacity and c) adequate sludge management. The researchers observe that accumulation of

TSS is the limiting parameter for the co-treatment of FS. If the increase exceeds the maximum plant capacity, the plant can experience serious operational problems ranging from overloading of aeration and secondary settling tanks (with associated solid-liquid separation problems) to a considerable decrease in the oxygen transfer efficiency (which can lead to insufficient aeration and therefore to oxygen limiting conditions). Modeling results indicated that low FS influent volumes (as low as 0.5% for medium- and high-strength FS and of 2.5% for low-strength) could also overload the plant and exceed the maximum recommended design concentrations for aeration tanks. In addition, the increase in TSS and mixed liquor suspended solids (MLSS) concentrations will also result in increased volumes of waste sludge. There must be sufficient capacity in the sludge handling and disposal/enduse facilities of the plant to deal and cope with the higher sludge volumes generated.

- 3. FS disposal can also impact oxygen transfer efficiency and therefore aeration requirements of the plant as well as performance of the secondary settling tanks.
- 4. Dynamic loading of FS at STPs: FS flow rates can be much more dynamic than wastewater because they are not just dependent on diurnal patterns, they are also dependent on factors such as the working schedule of service providers, the customer demand for collection services, and the season. This can result in peak loads during the busiest times that can overload the treatment plant. Results of modelling concluded that, under dynamic conditions, the maximum volumes that can be co-treated in an activated sludge plant without causing any process disruption or (effluent) deterioration sometimes need to be up to 10 times lower than those allowable under steady-state conditions the modeling also tested the impact of dynamic loading during off-peak hours, (discharge during the night) and the potential contribution of primary sedimentation tanks, with little impact on plant performance under dynamic conditions. This illustrates the importance of equalisation tanks to ensure a more even loading, and the need to distribute influent FS evenly through the entire day to approach steady-state conditions.

Co-treatment at STPs with Nitrogen removal

The organic content to nitrogen ratios in typical FS samples presented by the researchers indicate that organic concentrations in FS are not sufficient for nitrogen removal by denitrification. The researchers recommend that FS should only be considered for co-treatment in processes that include nitrogen removal if the influent wastewater has a high COD:TKN or BOD5:TKN ratio (i.e. 12-16 and 6-8, respectively). In contrast, the COD:TP and BOD₅:TP ratios in FS are relatively high, which suggests that there could be sufficient organic matter for biological phosphorus removal

Impact on cost of new STPs

The researchers indicated that while for new STPs can be designed to receive an treat FS, however, the design will probably lead to larger tank volumes, larger settling tanks, and higher installed capacity for aeration and sludge handling, treatment and disposal. For instance, compared to municipal wastewater treatment alone, for 1% FS co-treatment (regardless of the strength), the tank volumes will need to be 300% larger, the aeration capacity at least 200% higher, the secondary settling tanks 5 times larger and the sludge facilities 4 times larger. This will have a considerable impact on plant capital and O&M costs.

Impact of FS treatment in anaerobic treatment systems

Co-treatment of FS and wastewater in anaerobic processes is an alternative for sludge stabilisation, volume reduction and increased dewaterability. Possibilities include upflow anaerobic sludge blanket reactors (UASB), anaerobic digesters and anaerobic ponds. Anaerobic treatment can offset treatment

costs through the production of biogas, which can be used for heating or for the generation of electricity. Pathogen reduction can also be achieved with thermophilic digestion.

The researchers suggest that FS from septic tanks (digested FS) may not be appropriate for anaerobic co-treatment, depending on the level of stabilization it has undergone. In this case, the low concentrations of biodegradable organics in digested FS will lead to low biogas production but high solids accumulation resulting in significant operational costs with limited benefits.

The researchers observe that anaerobic treatment processes are disrupted by overloading of COD, ammonia inhibition, pH variations, and sulfide inhibition. Therefore, these factors need to be carefully monitored, and controlled, to ensure proper operation of co-treatment of FS in anaerobic treatment systems.

- 1. In UASB reactors, to prevent overloading, the maximum COD or VSS design loading rates must not be exceeded, and reactors must have consistent and uniform feeding
- For anaerobic co-treatment in digesters, it is recommended that the feeding, including FS, is always lower than one twentieth of the digester volume. This approach would mean a maximum 5% FS loading, regardless of its strength, to prevent overloading or significant reduction in the SRT.
- Ammonia Inhibition: The anaerobic co-treatment of FS can be inhibited by the high concentrations of ammonia present in FS. The researchers suggest that their volumes need to be limited to no more than 2, 5 and 8% for high-, medium- and low-strength FS, respectively (based on the total nitrogen concentrations expected in co-treatment of wastewater and fresh FS).
- 4. pH variations: In anaerobic systems, the pH needs to be carefully monitored and kept between 7.0 and 7.5. Monitoring, and if possible adjusting, the alkalinity levels and buffer capacity of the system can help to reduce pH fluctuations and maintain an adequate pH range. Other practices, such as gradual feeding and the controlled addition of external compounds (including charcoal ashes to enhance pathogen removal and nutrient recovery), also need to be carefully performed.